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 PRINCIPAL’S MESSAGE 
 

I am delighted to extend my warmest greetings to all the members of 
our esteemed institution as we present the latest edition of our 
Mathematics Magazine. It brings me immense pleasure to witness 
the dedication and enthusiasm that our students and faculty have 
put into curating this publication. 

Mathematics is not just a subject; it is a language that unveils the 
secrets of the universe and empowers individuals with problem-
solving skills that transcend the boundaries of academia. In this issue, you will find a 
diverse range of articles, problems, and insights that showcase the multifaceted nature of 
mathematics and its applications in various fields. 

I would like to express my gratitude to the editorial team, comprised of both students and 
faculty members, for their tireless efforts in bringing this magazine to fruition. Their 
commitment to promoting mathematical knowledge and fostering a love for the subject 
among our community is truly commendable. 

May this magazine serve as a source of inspiration, sparking curiosity and passion for the 
endless possibilities that lie within the realm of mathematics. 

I extend my best wishes to the contributors and hope that this publication not only 
enhances our understanding of mathematics but also fosters a sense of camaraderie among 
us. Let us celebrate the achievements of our students and  faculty, and continue to nurture 
a culture of learning and excellence in our institution. 

Thank you for your continued support, and I look forward to witnessing the continued 
gro1wth and success of our mathematics community. 
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Message from the 
Head of the Department 
Dr. Somnath Bandyopadhay, 

Maulana Azad College, Kolkata 
 

It is with great pleasure that I extend a warm welcome to each and every one of you to the vibrant 

realm of our College Mathematics Magazine. As the Head of the Mathematics Department, I am 

thrilled to witness the launch of this initiative that celebrates the beauty, diversity, and 

intellectual richness of the mathematical world. 

Our College Mathematics Magazine is not just a publication; it is a testament to the collective 

passion, curiosity, and brilliance that defines our mathematics community. Mathematics is not 

merely a subject, but a language that unveils the secrets of the universe. Through this magazine, 

we aim to foster a deeper appreciation for the elegance and power that mathematics brings to our 

lives. 

In the pages that follow, you will encounter a variety of articles, features, and insights that 

showcase the remarkable achievements of our students and faculty. This magazine serves as a 

platform to showcase the exceptional talent within our mathematics department. 

I encourage each of you to actively engage with the content, whether you are a seasoned 

mathematician or just beginning your mathematical journey. This magazine is a space for 

everyone to learn, explore, and be inspired by the limitless possibilities that mathematics 

presents. 

I would like to express my gratitude to the dedicated team of students and faculty members who 

have worked tirelessly to bring this magazine to fruition. Your commitment to excellence is 

evident in every page, and I am confident that this publication will be a source of pride for our 

mathematics community. 

As we embark on this exciting journey together, let us celebrate the beauty of mathematics and 

the intellectual curiosity that drives our exploration of its depths. May this magazine be a source 

of inspiration, motivation, and a testament to the enduring spirit of our College Mathematics 

Department. 

Wishing you all a fantastic experience as you delve into the pages of our inaugural Mathematics 

Magazine! 

 

 

 

                                                                                                 Head 

                                                                                               Mathematics Department, 

                                                                                               Maulana Azad College 
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TEACHER’S EDITORIAL 
 

 

 

 

 
 

 

 

 

Dear Readers, 
 
It is with great pleasure and enthusiasm that we welcome you to the latest issue of 
Mathematics Magazine. As we embark on this mathematical journey together, I 
am reminded of the profound beauty and importance that mathematics holds in 
our lives. 
 
In this edition, we have curated a collection of articles that span the diverse 
landscape of mathematics, from Algebra, Number Theory and Real Analysis in 
pure Mathematics to Mathematical Biology and articles related to Applied 
Physics. Our contributors, comprising of current and former students to the 
esteemed members of our mathematical faculty, have crafted insightful pieces that 
we are confident will engage, inspire, and perhaps even challenge your 
understanding of the mathematical universe. In addition to our regular features, 
this issue includes the various programs/extra-curricular activities that were held 
at the department. 
 
Our goal is to not only showcase the breadth and depth of mathematical knowledge 
but also to demonstrate its profound impact on the world around us. 
 
I extend my sincere gratitude to all the contributors who have shared their 
expertise and passion for mathematics, as well as to our dedicated editorial team 
for their tireless efforts in bringing this issue to fruition. I hope that Mathematics 
Magazine continues to be a source of intellectual stimulation and a catalyst for 
fostering a deeper appreciation of the mathematical sciences. 
 
 

 

 

 
Associate Professor,                                                                                           Associate Professor, 

Mathematics Department,                                                                                   Mathematics Department, 
Maulana Azad College                                                                                        Maulana Azad College 

 

                    DR. NANDA DAS                                                                     DR. BABLI SAHA 
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STUDENT’S EDITORIAL 

-A Journey Beyond Numbers 

 

 

Dear Readers, 

Welcome to this edition of our college Mathematics Magazine! As we dive into the vast 

ocean of mathematical wonders, we find ourselves surrounded by the elegance, precision, 

and sheer beauty that mathematics offers. Mathematics is considered to be the most 

fundamental subject of all. Every other subject from Physics and Chemistry to social science 

like Economics to even the modern subjects like Computing and Data Science are all 

dependent on maths. In This issue, we embark on a journey beyond mere numbers, 

exploring the depths of mathematical concepts that not only shape our understanding of 

the world but also captivate our imagination. 

This magazine has been the result of extensive hard work by the students of the 

Mathematics Department who were well guided and supervised in their writings and 

research about the various topics by our beloved Professors.  

Through this magazine, our aim is to show that Mathematics is not just an abstract concept 

confined to textbooks and classrooms; it is a powerful tool with real-world applications. 

We, the student editors of “MATHZIN” would like to express our sincere gratitude to all the 

students and Professors of our department for their valuable imputes. We hope the readers 

enjoy reading this edition of the magazine and find full of amazing facts. May the beauty 

of mathematics continue to inspire and captivate us all ! 

 

Best regards, 

       SRIJAN DAS                                    NABEELA JAHAN                                   ABHIJEET SAHA 
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A Brief Discussion bout 𝜋 ~ Srijan Das 
 

𝜋, We all know this sign. It is Pi, a very common symbol, used by almost all branch 

of sciences. But what is it? We know it as a constant value, 3.14. But how we get 

this value? or is it true that  𝜋 = 3.14? some of us say that it is equal to 22/7 , but is 

it true? Let us try to know about it… 

The concept of pi is very old, difficulty of making a perfect cart wheel and calculating 

the area of a circle is the cause of generating pi. There is some trace of pi value in ancient India & in Egyptian 

civilization. At that time, they calculate the value of pi very nearly of it accurate value.  

  Around 250 BC Greek mathematician Archimedean improve a method to find the 

value of pi. He tried to calculate the perimeter of a hexagon (each side is 1 unit) 

inscribed in a circle [fig 1]. Then the perimeter of the hexagon is 6, which is less than 

the perimeter of the circle(say C) ,then 2 𝜋 r > 6, i.e, 𝜋 > 3 [ as r=1]. He also calculate 

the perimeter of the squre in which the circle [r=1]  is inscribed [fig 2]. Then the 

perimeter of the circle is less then perimeter of squre.i.e, 2 𝜋 r < 8 => 𝜋 <4. 

i.e, 3 < 𝜋 < 4 

In this way he increase the sides of polygon , and see that the difference of the length 

of the perimetre of the circle andthe polygon is decreasing. 

For 12 sided polygon 2 𝜋 > 6.212, and 2 𝜋 < 6.431 i.e, 3.106 < 𝜋 < 3.2155.  

Increasing the sides he got at last 3.1408 < 𝜋 < 3.1429. 

After this many scientists try to increase the sides and calculate more accurately the 

value of pi. At 16th century, Francois Viѐte compute with 393216-sided polygon then 

Ludolph van Ceulen work with 262 sides and get 35 decimals of correct pi. 

 𝜋 =3.14159265358979323846264338327950288[it has been written on his grave]. 

Then 20 yrs. later Mr. Christof, who probably do this process last        

 and get 38 decimal accuracy. 

After this in year 1666 Newton (at 22 yrs. age when he was quarantining at home for 

Plague), he found that binomial series (1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2!
𝑥2 +…..is true for 

negative n also &(1 + 𝑥)−1 = 1 − x + 𝑥2 − ⋯ ,which is an infinite series, he also show 

that it works for fractions like n=1/2.  

       Now the equation of the upper half of a unit circle (area= 𝜋) is 𝑦 = (1 − 𝑥2)1/2 = 1 −
1

2
𝑥2 −

1

8
𝑥4 − ⋯ 

Figure 1 

Figure 2 

Figure 3 

Figure 4 
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So, the area of the positive quadrant is 
𝜋

4
 . Now sir Newton create the calculus and by integrating he try to 

calculate the area of the positive quadrant. 

𝜋

4
= [𝑥 −

1

6
𝑥3 −

1

40
𝑥5 − ⋯ ]

1

0
 

Putting 1 in x in this equation newton get a value of pi. But for x=1/ 2 the value of 

terms are getting smaller faster. So, he integrates the equation between 0 to ½. So the 

area of OBAD is 
𝜋

12
+

√3

8
 (<AOD = 30o, ΔAOB=

√3

8
 ). 

𝜋

12
+

√3

8
= [𝑥 −

1

6
𝑥3 −

1

40
𝑥5 − ⋯ ]

1/2

0
 

Calculating this infinite series, the value of pi can be calculated easily. Calculating 1st five terms, we get  Π = 

3.1461and calculating only 50 terms we get Ludolph van Ceulen value which is accurate for 35 decimal place 

without calculate the perimeter of 2^62 sided polynomial. So, after this process no one try to calculate sides 

for getting pi value. 

But now for calculating pi value there is many formulas one of them is Machin like formula which is 

𝜋

4
= tan−1

1

2
+ tan−1

1

3
 

 using the series 

    tan−1 𝑥 = 𝑥 −
𝑥3

3
+

𝑥5

5
−

𝑥7

7
+ ⋯   , |x| < 1. 

 

The latest record is 30 trillion digits on national PI-Day 14th March,2019 by using Chudnovseky algorithm 

which is    

1

𝜋
= 12 ∑

(−1)𝑘(6𝑘)! (545140134𝑘 + 13591409)

(3𝑘)! (𝑘!)3(640320)3𝑘+3/2

𝐼𝑛𝑓

𝑘=0

 

. 

Actually, pi is an irrational number so it cannot be reached to its accurate value by rational numbers. Basically, 

we have reached to a very accurate value of pi but this algorithm has been performed for checking super 

computers. 

Now coming to the question that, is the value of pi = 22/7 ?  

The answer is no. 22/7 is not equal to actual value of pi as 22/7=3.1428571429. That’s why we use 4 ∗ tan−1 1 

instead of using 22/7 in our programming code. 

Figure 5 
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The Ramanujan Paradox  - Somyajit Saha 

1 + 2 + 3 + 4 + 5 + ⋯ = −
1

12
 

, Wait a minute, what? That looks very wrong. You must be wondering if the title is some 

horrendous typo, right? Well, let me assure you that it is absolutely not! The sum of all 

natural numbers is equal to -1/12. The equation above is actually a very important result 

used in theoretical physics, particularly in string theory. Now how can that be possible? Are physicists really that 

bad at mathematics? That can’t be it! What is the proof behind this? Do we ever encounter it in real life? It is 

actually a rather simple proof. Before we get to that, it’s 

important to understand a couple of other things.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Why is it so counter intuitive? 

 

2Y= 1- (2-1) + (3-2) - (4-3) +… 

2Y= 1-1+1-1+1-1+… 

But the summation on the right-hand 

side is X. 

Let’s substitute it: 2Y=X, 2Y=1/2, Y=1/4. 

 

Finally let’s consider our original 

question at hand i.e. the sum of all 

natural numbers: 

S=1+2+3+4… 

We defined Y earlier as: Y=1-2+3-4+… 

Subtracting Y from S we get  

S-Y =1-1+2+2+3-3+4+4+… 

i.e. S-Y= 4+8+12+16+… 

we just calculated the value of Y to be 

¼. 

So, let’s substitute it: 

S-1/4 = 4 ×(1+2+3+4…) , S-1/4 

=4S,3S=1/4,  

S= -1/12 

So, there we go! We now have the 

proof.   

Let’s consider the following infinite 

summation: 

X=1-1+1-1+1-1+… 

Rearranging the above equation a 

little bit, we get: 

X=1-(1-1+1-1+1-1+…) 

If you look at the term inside the  

brackets, it in fact equals X. So, let’s 

substitute  

that: 

X=1-X, 2X=1, i.e. X=1/2 

Now let’s consider another sum.  

Y=1-2+3-4+5-6+… 

Writing it in another way, we get: 

Y= 0+1-2+3-4+5-6+… 

Adding the above two equations: 

Y+Y= (1-2+3-4+5-6+…) + (0+1-2+3-

4+5-6+…) 

Grouping the corresponding terms in 

brackets,  

We get: 

2Y= 1+0-2+1+3-2-4+3+5-4-… 
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The reason it looks counter intuitive is because people think “infinity” is actually a number, and that if we keep 

adding values until “infinity”, we will get a very large number. Well, this line of argument is wrong on multiple 

levels! First of all, “infinity” is not a number. It is a concept relating to uncountability. We have all these notions 

about numbers, absolutely none of which are applicable to “infinity”. The algebraic rules that apply to regular 

numbers do not apply to infinity. More specifically, the algebraic rules that apply to regular numbers do not apply 

to non-converging infinite sums. 

           Second of all you cannot keep adding values until infinity because you will never get there. So, if you try 

to prove it this way, you will actually never know what the sum of all natural numbers is. All of the sums we 

discussed above are non-converging infinite sums, so regular algebraic rules to not apply. It is like trying to use 

regular algebra to explain division by zero, which is going to get you nowhere. But mathematicians and physicists 

don’t like the concept of “getting nowhere”. So, there are ways to define the sums of non-converging infinite 

series so that they do not lead to contradictions. The one that leads legitimately to the conclusion that 

1+2+3+4+5+…= -1/12 is called Ramanujan Summation. 

 

Even if it’s not a big number, how on earth can it be negative fraction? 

            At first glance, it makes absolutely no sense. I agree to that! If you keep adding positive numbers to each 

other, the result has to be positive as well. This line of logic is completely valid, if we were not dealing with 

infinity! The concept of infinity is very fundamental, yet very obscure. When you think of a series of numbers 

and their summations, people are heavily inclined towards thinking about convergent series. When we are dealing 

with divergent series, things get a little trickier. For example, 1+ 1/2 +1/4 +1/8 +… is a convergent series because 

the sum approaches the value of 2 as you keep adding more terms. On the other hand, 1+1+1+1+1+… is a 

divergent series because the sum just keeps increasing as you keep adding more values to it.  

What is the logical explanation?  

               For the more mathematically inclined readers, here is the explanation. To each convergent series, the 

operation that associates the limit of it’s partial sums is just a linear functional defined in the convergent series. 

This functional can be extended in many ways to the rest of all the series. This extension doesn’t have to have a 

meaning connected to that of the sum of convergent series. It is like when you have the function f(x)=1/(1-x) 

defined for  x not equal to 1 (because 1/0 is not defined ) and you extend it by defining f(1) =4 (or any other 

value). It is just an extension and it is not implying anything about 1/0. In real life, when you are designing 

functions, you have to accommodate these things so that your system behaves nicely. 

 

                 This will be easier to explain with Riemann Zeta functions. This result is actually related to the 

Riemann Zeta function for  s =-1. If you want, you can check out Wolfram Alpha for the Zeta function. If you set 

s=-1, the Zeta function will be reduced to the simple summation of 1+2+3+4+… and if you ask it compute the 

result, it will show it to be -1/12. You can read up more on Ramanujan Summation as well to have a better 

understand of the whole thing.   
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THE FASCINATING WORLD OF MAGIC SQUARE 

• Chitrita Hazra  
 
Magic squares have intrigued and captivated mathematician and enthusiasts for 

centuries. So, what is a magic square? A magic square grid filled with numbers, usually 

positive integers, arranged in such a way that the numbers in each row, column and 

diagonal add up to an equivalent sum. This sum is called “Magic Number”. The ‘order’ 

of a magic square is the number of cells along one side, so a 3x3 magic square has 3             

cells in each row and column. Let’s look at some 3x3 magic squares. 

 

2 9 4 

7 5 3 

6 1 8 

 

                                                     Magic number=15 

 

18 21 6 

3 15 27 

24 9 12 

 

                                                      Magic number=45 

 

Magic squares have a long history, dating back to at least 190 BCE in China. At various times they have 

acquired occult or mythical significance, and have appeared as symbols in works of art. In modern times they 

have been generalized a number of ways, including using extra or different constraints, multiplying instead of 

adding cells, using alternate shapes or more than two dimensions, and replacing numbers with shapes and 

addition with geometric operations. 

❖ Now we try to unveil the mysteries of Magic Square step by step. 

 

a e c 

 g x h 

d f b 

If we know the central number (i.e x) we can get the magic number 3x. If the magic number is 3x then from 

the table we can write a + b=2x, e + f=2x, c+d=2x, g+h=2x. Taking this concept we see an example  

 3  

 5  

  2 

 

Here x=5 so 3x=15, so from the previous table the remaining box of the second column will be 7(15-

(3+5)=7).Putting this value, we get the blank box of the third row will be 4(15-(8+3)=6).By continuing this 

way, we get magic square below. 

8 3 4 

1 5 9 

6 7 2 

 

Let’s see another where the central element is not given. Take a look at table below. 

   

10  14 

11   

 

Since the central element is missing here, let us assume it is x, then 10+14=2x, so x=12. Then 3x12=36 is the 

magic number. And by the previous method, the table becomes  

15 8 13 



 

10 12 14 

11 16 9 

 

 

❖ Some properties are given below 

 

Magic constant 

 

The constant that is the sum of any row or column or diagonal is called the Magic Constant or magic sum, M. 

Every normal magic square has a constant dependent on the order n, calculated by the formula M=n(n2+1)/2. 

Since the sum of each row is M, the sum of n rows is the sum of 1,2,3,,………,n2is n2(n2+1)/2. Since the sum 

of each row is M, the sum of n rows is nM=n2(n2+1)/2, which when divided by the order n yields the magic 

constant as M=n(n2+1). For normal magic squares of orders n= 3, 4, 5, 6, 7, and 8, the magic constants are 

respectively 15, 34, 65, 111, 175, and 260. 

 

Magic square of order 1 is trivial  

 

The 1x1 magic square with only one cell containing the number 1, is called trivial because it is typically not 

under consideration when discussing magic squares; but it is indeed a magic square by definition, if a single 

cell is regarded as a square of order one. 

 

Magic square of order 2 cannot be constructed. 

 

Normal magic squares of all sizes can be constructed except 2x2( that is, where order n=2). 

 

❖ Some famous magic squares. 

 

Luo Shu magic square 

 

Legends dating from as early as 650 BCE tell the story of the Lo Shu (洛書) or "scroll of the river 

Lo".[8] According to the legend, there was at one time in ancient China a huge flood. While the great king 

Yu was trying to channel the water out to sea, a turtle emerged from it with a curious pattern on its shell: a 

3×3 grid in which circular dots of numbers were arranged, such that the sum of the numbers in each row, 

column and diagonal was the same: 15. According to the legend, thereafter people were able to use this pattern 

in a certain way to control the river and protect themselves from floods[needs citation]. The Lo Shu Square, 

as the magic square on the turtle shell is called, is the unique normal magic square of order three in which 1 

is at the bottom and 2 is in the upper right corner. Every normal magic square of order three is obtained from 

the Lo Shu by rotation or reflection. 

 

 
Lo Shu from "The Astronomical Phenomena" (Tien Yuan Fa Wei). Compiled by Bao Yunlong in 13th century, 

published during the Ming dynasty, 1457–1463. 

 

Magic square in Parshavnath Temple. 

 

https://en.wikipedia.org/wiki/Lo_Shu
https://en.wikipedia.org/wiki/Magic_square#cite_note-Swetz2008-8
https://en.wikipedia.org/wiki/History_of_China#Ancient_China
https://en.wikipedia.org/wiki/Yu_the_Great
https://en.wikipedia.org/wiki/Yu_the_Great
https://en.wikipedia.org/wiki/Turtle
https://en.wikipedia.org/wiki/Lo_Shu_Square
https://en.wikipedia.org/wiki/Ming_dynasty


 

There is a well-known 12th-century 4×4 normal magic square inscribed on the wall of the Parshvanath temple 

in Khajuraho, India.[18][17][49] 

 

7 12 1 14 

2 13 8 11 

16 3 10 5 

9 6 15 4 

 

 

 

This is known as the Chautisa Yantra (Chautisa, 34; Yantra, lit. "device"), since its magic sum is 34. It is one 

of the three 4×4 pandiagonal magic squares and is also an instance of the most-perfect magic square. The 

study of this square led to the appreciation of pandiagonal squares by European mathematicians in the late 

19th century. Pandiagonal squares were referred to as Nasik squares or Jain squares in older English literature. 
 

 

 
Magic Square at the Parshvanatha temple, in Khajuraho, India 

 

 

Magic squares are fascinating mathematical constructs that have captured the imagination of people across 

cultures and centuries. Whether viewed as mystical symbols, mathematical curiosities, or artistic inspirations, 

magic squares continue to intrigue and inspire new generations to explore their secrets and beauty.
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ক্যালকু্লাসের দ্বন্দ্ব – ররাহন মন্ডল 

বিজ্ঞাসনর জগসে গসিষণার কৃ্বেত্ব বনসে প্রবেদ্বন্দ্বন্দ্বো নুেন নে। েবিৎ আর চুম্বসক্র পারস্পবরক্ 

লক্ষ ক্রা বনসে রজাসেফ রহনবর আর মাইসক্ল ফযারাসের বিিাদ, অন্দ্বিসজন আবিষ্কাসরর কৃ্বেত্ব দাবি 

ক্সর আসোোঁ লযাভবিসে এিং রজাসেফ বপ্রস্টবলর ক্ান্দ্বজো, এেে ররাসগর জীিাণ ুিনাক্ত ক্রা বনসে 

রিার্ট গযাসলা এিং লুক্ মোোঁবনসের দন্দ্ব েি এক্ এক্র্া উপাখ্যান। 

     বক্ন্তু েি রেসক্ রেরা উপাখ্যান আজ রেসক্ ক্মসিবি বেনসিা িছর আসগর এক্ দ্বন্দ্ব। এর ক্ারণ রেই দ্বসন্দ্বর রক্ন্দ্রবিন্দ ু

গবণসের এক্ অবে প্রসোজনীে িাখ্া, ক্যালকু্লাে। আর প্রবেদ্বন্দ্বন্দ্ব দজুসনর এক্জন হসলন পদাে টবিজ্ঞাসনর অবিস্মরণীে 

বিজ্ঞানী আইজাক্ বনউর্ন। অপরজন হসলন গর্বিে উইলসহলম ফন বলিবনৎজ। 

      েসি গবণসের এই বিসিষ িাখ্ার উদ্ভািন বনসে বনউর্ন আর বলিবনৎজ বক্ভাসি দ্বসন্দ্ব জিাসলন োোঁর জিাি বমলসি 

ইবেহাসে। 

     ১৬৬৫ োসলর রগািাে হর্াৎ রেগ এই মিক্ ছিাসে োসক্ ইংলযাসন্ড। রক্মবিজ বিশ্ববিদযালে িন্ধ হসে রেসেই বনউর্ন 

চসল আসেন োোঁর গ্রাসমর িাবিসে। রেখ্াসন ক্ার্ান প্রাে দু'িছর। এই েমের্া বনউর্সনর জীিসন এক্ আশ্চে ট ক্াল। 

পদাে টবিদযার েেগুবল আবিষ্কাসরর জনয বেবন বিখ্যাে োর েি ওই েমে োর এক্ক্ বচন্তার ফেল। এিং ওই েমসেই 

ক্যালকু্লাে আবিষ্কার ক্সরন বেবন। েসি আবিষ্কার ক্রসলও বনউর্ন বিষেটর্সক্ ওই নাসম বচবিে ক্সরনবন। বেবন 

বেফাসরনবিোল আর ইবিগ্রযাল ক্যালকু্লােসক্ িসলবছসলন 'ফ্লািন' আর 'ফ্লুসেি' বনণ টে প্রন্দ্বিো। 

      েসি বনউর্ন োর অনয েি আবিষ্কাসরর মসো এই আবিষ্কারও রগাপসন ররসখ্বছসলন। আর ঝগিার েূত্রপাে হসলা 

এখ্ান রেসক্ই। ১৬৬৯ বিস্টাসে বনউর্ন  ছাত্র ও েহক্মীসদর জনয বলখ্সলন এক্ পুন্দ্বিক্া। বিসরানাম 'বদ অযানালাইন্দ্বজ 

পার একু্সেিসনে নুসমসরা র্ারবমসনারাম ইনবফবনর্াে'। এই পুন্দ্বিক্াসে বনউর্ন মাত্র এক্রু্খ্াবন ইবিে বদসেবছসলন 

ক্যালকু্লাে বিষসে োর ক্াসজর। 

      এ বদসক্ ১৬৭৫ বিস্টাে নাগাদ বলিবনৎজ আবিষ্কার ক্রসলন ক্যালকু্লাে। েম্পণূ ট বনজস্বভাসি। িলা িাহুলয এসক্ষসত্র 

বেবন রে েি োংসক্বেক্ বচি িযিহার ক্রসলন, রেমন dx, dy িা অনযানয আসরা বক্ছু, রে েি রিবি জনবপ্রে হল বনউর্সনর 

িযিহৃে বচিগুবলর রচসে। 

      ১৬৮৪ বিস্টাসের অসটাির মাসে লাইপৎন্দ্বজগ বিশ্ববিদযালে রেসক্ প্রক্াবিে জান টাল 'অযাক্র্া এরুবেসর্ারাম' এ এক্ 

প্রিন্ধ বলসখ্ বলিবনৎজ প্রেম েক্লসক্ জানাসলন ক্যালকু্লাে েংিান্ত োোঁর ক্াজ। এসে আেন্দ্বিে হসলন বনউর্ন। 

       োই ১৬৮৭ বিস্টাসে প্রক্াবিে োোঁর জগবদ্বখ্যাে গ্রন্থ 'বফসলাজফাসে নযাচুরাবলে বপ্রনবখ্বপো মযােসমটর্ক্া'ে বেবন 

জানাসলন বনউর্ন ক্যালকু্লাসের লসক্ষয এসগাসেন রজসন বলিবনৎজ ওসেনিাগ ট এিং ক্বলনে মারফে োোঁর ক্াসছ 

অনুসরাধ পাটিসেবছসলন োোঁর গসিষণার অগ্রগবের খ্ির বলিবনৎজসক্ জানাসে। ১৬৭৬ বিস্টাসের অসটািসর বনউর্ন 

রেই বচটির জিাসি ক্যালকু্লাে বিষসে োোঁর গসিষণার িণ টনা রদন ভাোভাো ভাসি। 

      এরপর ১৭ িছর দু পক্ষই নীরি োক্ার পর ১৭০৪ বিস্টাসে বনউর্ন প্রক্াি ক্সরন আসলাক্বিদযা েম্পসক্ট োোঁর গসিষণা 

েংিবলে িই 'অপটর্ক্ে'। এই িইসের পবরবিসে রক্াসনা প্রসোজন ছািাই বেবন েবিিাসর োোঁর উদ্ভাবিে ক্যালকু্লাে। এিং 

রেইেসি েসচে হসলন এ গসিষণাে বনসজর প্রেম োফলয প্রমাসন। 

      'অপটর্ক্ে' এর পবরবিে পসি বলিবনৎজ রখ্সপ রগসলন। ১৭০৫ বিস্টাসে 'অযাক্র্া এরুবেসর্ারাম' জান টাসল রিনাসম 

েমাসলাচনা বলখ্সলন িইখ্ানার। এর প্রবেন্দ্বিো েহসজই অনুমান ক্রা োে। ক্যালকু্লাে েুসে ইউসরাসপর পন্দ্বন্ডেগণ 

এিার রেন বদ্বধাবিভক্ত হল। বনউর্সনর পসক্ষ ইংলযাসন্ডর েমি পন্দ্বন্ডে। আর বলিবনৎজ এর েমে টসন িাবক্ ইউসরাপ। 

জাম টান পন্দ্বন্ডসের পসক্ষ এই বিপুল েমে টসনর অনযেম ক্ারণ বনউর্সনর বনসজর গসিষণা রগাপন ক্সর রাখ্ার জনয 

ক্যালকু্লাে এর আবিষ্কেটা বহসেসি ইউসরাসপর অবধক্াংি রদি েেবদসন রক্িল বলিবনৎজসক্ বচবিে ক্সরসছ। 

 

      এরপর ১৭১২ বিস্টাসে, রেযাল রোোইটর্র বিসদিী রফসলা বহসেসি, বলিবনৎজ েবমবেসক্ অনুসরাধ ক্রসলন আইবেো 

চুবরর অপিাদ রেসক্ োোঁসক্ মুন্দ্বক্ত রদওো রহাক্। রোোইটর্র রপ্রবেসেি েখ্ন বনউর্ন স্বেং। পুসরা িযাপারর্া েদসন্তর জনয 

বেবন বনসোগ ক্রসলন এক্ ক্বমটর্। েদসন্তর পর ক্বমটর্ বলিবনৎজ রক্ বনসদটাষ িা আইবেো েস্কর দুসর্ার রক্াসনার্াই না 

িসল রক্িল রাে বদল, বনউর্ন বলিবনৎজ এর ১৫ িছর আসগ ক্যালকু্লাে আবিষ্কার ক্সরসছন। 
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      েসি এই েদসন্তর বরসপাসর্টই ক্ষান্ত হল না ক্যালকু্লাে েুে। চলল রমার্ প্রাে চার দিক্। এমনবক্ দুজসনর মৃেুযর 

পসরও। জীিদ্দিাে বিজ্ঞানী বহসেসি খ্যাবের িীসষ ট রপ ৌঁছসলন বনউর্ন। মৃেুযর পর লন্ডসনর ওসেস্টবমবনস্টার অযাসি রে 

পূন ট রাষ্ট্রীে মে টাদাে েমাবধ রদওো হল োোঁর মরসদহ। 

আর বলিবনৎজ গবণে গসিষণাে আর রেমন িযি রইসলা না। িই বলখ্সলন দি টনিাসের বক্ছু বক্ছু বিষসে। মাত্র েত্তর িছর 

িেসে োোঁর মৃেুযর পর মরসদহ েমাবধস্থ ক্রার েমে হান্দ্বজর বছসলন রক্িল োোঁর রেসির্াবর। 

 

 েেযঋণ : (১) ইিারসনর্। 

                (২) পবেক্ গুহর রলখ্া,'ঈশ্বরক্ণা মানুষ 

                      ইেযাবদ'।
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FLINT HILLS SERIES   

Arka Prabha Roy 

 

Anyone in the field of mathematics, from students to researchers to teachers, has always  

come across terminologies such as “Series of Real Numbers” and “Convergence” in  

undergraduate level, and analysed the series to conclude if the series is convergent or divergent. They have 

learned a set of methods such as “Root test”, “Ratio Test”, “Condensation test” and so on. But as Sir Isaac 

Newton once said What we know is a drop, what we don't know is an ocean. And thus there exists a few 

series which might pique the reader’s interest, one such being the Flint Hills Series. 

 

Named after a region in Eastern Kansas, this infinite series of real numbers is expressed as   

   

𝛴
1

𝑛3𝑠𝑖𝑛2𝑛
 

Now, what is so interesting about this series? It is the fact that the convergence of this series is unresolved, 

meaning we don’t know if it will converge or diverge. But why? One might think initially that in the 

denominator, the 𝑛3 will dominate the 𝑠𝑖𝑛2𝑛 part and this will converge. But the flaw of this approach is 

𝑓(𝑥) =
1

𝑠𝑖𝑛2𝑥
is not bounded. Now one can argue that for no natural number n, 𝑠𝑖𝑛2𝑛 is zero and thus 

1

𝑠𝑖𝑛2𝑛
is a 

finite number , and although the statement is true, the argument isn’t valid in this case because for certain  𝑛 ∈

𝑁, 
1

𝑠𝑖𝑛2𝑛
takes large value. So can you say that this is a divergent series? The answer is no, because it is unknown 

if the cardinality of the collection of all those certain n is finite or not. And for the rest natural numbers, 
1

𝑛3dominates
1

𝑠𝑖𝑛2𝑛
 .  

 

One may also try to do a few tests, which will fail to give us any conclusions to its convergence and divergence. 

One can also take a graphical approach to see the behaviour of this series, but it will not help them as no new 

information can be obtained which isn’t stated above.  

 

But now the question pops up, why? Why is the series showing erratic behaviour for certain natural numbers? 

The key lies in one of our well-known irrationals (and transcendental) real numbers, which is Pi (π).We know, 

𝑠𝑖𝑛2(𝑚𝜋) = 0 for all integers m. So, if you have an integer which is close to mπ, it will produce a large value 

of 
1

𝑠𝑖𝑛2𝑛
 . An example being the elements of sequence 1,3,22,333,355…. and so on. This sequence is indexed 

A046947 in OEIS, which generates a subsequence of |𝑠𝑖𝑛(𝑛)| which monotonically decreases to 0. Along 

with the 𝑛3 factor multiplied in the denominator; the series shows an erratic behaviour due to which 

convergence of the series is neither proved nor disproved.  

 

Although not proven, a statement is presented by Dr. Max Alekseyev in 2011. He commented that if Flint 

Hills Series converges, that would imply irrationality measure of 𝜋, denoted by 𝜇(𝜋)satisfies 𝜇(𝜋) ≤ 2.5, 

which is a much stronger condition than the best known upper bound 𝜇(𝜋) ≤ 7.6063. . . .. 

 

And there you have it, a series of real numbers whose convergence is unknown. The reader can take this series 

up and try to see it for themselves. Who knows, you may be the one to solve this “Unsolved” problem. 
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Extended Complex Plane and Compactness:  
 Arka Prabha Roy 
 
You’ve heard of complex plane, right? If not, think of it as the real plane and denote 1 = (1,0) and𝑖 =

(0,1), where i is the square root of -1. And you can see that this plane has some special properties 

regarding its subsets and functions on it. But we’re interested in talking about the Extended Complex 

Plane. Now you may ask “what do I mean by Extended”. When we talk about Complex plane, we do 

not include infinity in it. But in Extended complex plane, we extend the complex plane by adding 

∞ with the set. This set is denoted by ℂU{∞}. 

 

But what exactly does it look like? You can’t visualise infinity, at least not in the same dimension. 

One can visualise infinity from a higher dimension. That’s where the Riemann Sphere comes in play. 

It’s pretty simple, you first draw the x-y plane (complex plane). Then from origin, perpendicular to 

the plane, z axis can be drawn, which will be our third dimension. Now take a unit sphere centred at 

origin, and think of its highest point as North Pole, or N(0,0,1). Now for a complex number z=x+iy, 

or (x,y,0), draw a line from the North Pole to the z. The point P at which the line intersects the sphere 

(except N) is the projection of the complex number on the Riemann sphere, commonly known as 

stereographic projection. 

 

Now, it is evident that no complex number 

maps to the North Pole. But assume if infinity 

comes into play now. Then a line from infinity 

will be parallel to the complex plane, only 

intersecting the sphere at North Pole. Then we 

can say that infinity maps to N and we will get 

a bijection from  ℂU{∞} to the unit sphere. 

This is also bicontinuous, so we have a 

homeomorphism here. Now the topological 

properties of  ℂU{∞} will be the same of unit 

sphere. One of these properties is Compactness. 

We can say that  ℂU{∞} is compact, and this is an example of one point compactification. But let’s 

prove it by the definition involving covers. 

 

Suppose A be an open set containing∞. Then the set A has to be of the form  

A= {z: |z|>M where M is a fixed real number}. Then suppose {𝑈𝑛} be a collection of open covers 

covering the Extended complex plane. Then one of them has to be of the form A. Then we can take 

finitely many open covers of the collection, which will cover the closed set {z: |z|≤ 𝑀} and add the 

single set of form A to the finite collection, which will give us a finite subcover of the initial cover. 

Then we can conclude that  ℂU{∞} is compact.  

 

This is one of many properties of the extended complex plane. Now you can also take this set up 

and check its various properties yourself.
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LET’S SEE THE ECOLOGY THROUGH PHYSICS                

~Ayan Paul  

The story I will narrate here is the manifestation between the population ecology and 

classical mechanics. Whenever we hear the term "Ecology" or "Population Ecology", the most common things 

that appear in our mind are Ecosystem, Growth curves, Prey-predator interaction, Symbiosis, Parasites, Plankton 

experiments, and many more. Since the subject “Ecology” is primarily comprised of several biological and natural 

phenomena. But, all of a sudden, we fairly miss an important aspect behind the aforementioned incidents, i.e., the 

inherent mechanism of the ecosystem. We all know that the dynamics of a natural system is regulated by various 

physical laws, which are not exceptional in case of the ecological instances. Let me give you a brief example of 

this. 

Suppose we consider the paradigm of the famous Malthus law in ecology. The mathematical expressions of the 

Malthusian dynamics show that nature will allow all the species for unlimited growth. That means if nature does 

not provide any restrictions, the species can grow unboundedly. Doesn't the statement of Malthus law sound like 

Newton's first law in classical mechanics? Yes, of course.   

But, you will definitely wonder to think how I can 

suddenly jump into Newton's law while discussing an 

ecological phenomenon. Since, the laws of Newton are 

completely defined on the particle motion. Actually, if 

anyone recalls the first law of Newton, i.e., "if a body is 

at rest or moving at a constant speed in a straight line, it 

will remain at rest or keep moving in a straight line at 

constant speed unless a force acts upon it.", he/she 

definitely finds a synergy between the particle dynamics 

and the Malthusian effect. Since, the statement of 

Malthusian law highlights that, if nature will not 

provide any kinds of perturbations to a species, it will grow unboundedly in an exponential fashion. But, in reality, 

this phenomenon does not happen since several external affairs exist in an ecosystem, viz. competition, 

cooperation, mutualism, etc., just like the forces on any particle body. Instead of several external involvements, 

any species must follow a sigmoidal or S-shaped growth trajectory to reach its destination, i.e., carrying capacity 

or asymptotic size. The reason to attain the carrying capacity is very phenomenological since every species' 

intrinsic nature to sustain around its asymptotic size.  

It is worth mentioning that the S-shaped growth profile can be mostly classified into three major steps. On the 

initiation of the growth process, it can be distinguished into Lag, Log, and, Stationary phases. That means at the 

end of every stage, the species must get a kicked-up force in terms of its internal metabolism or population 

structure to attain the next phase of the growth process. It seems to be a particle crossing one to another inclined 

plane. So, you can think that biomass changing over a growth trajectory can be synergistic with pulling an object 

in an inclined plane by providing some external force parallel to the axis of that plane. So, it is better to discuss 

this synergistic phenomenon through an example of pulling an object through the inclined plane. 
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Let us consider an inclined plane ODP with an inclination angle 𝜃(the figure is given below). Now, the aim is to 

lift an object (M) from the position 'O' to 'D'. To do this, you must provide an external force 'Q', acting parallel to 

the plane 'OD'.  

Hence, you can think that the smooth sigmoidal trajectory of the species growth can be approximated by the 

cumulative effect of three distinct inclined planes ABJ, BCR, CES in the figure 2. Since the sigmoidal trajectory 

contains three growth phases: lag, log, and stationary. But, in this case, three planes must have a different 

inclination angles. But, one can generalize the concept of three inclined planes into a multiple for a better 

approximation of the sigmoidal trajectory. When any individual is lifting the object 'M' by the external force 'Q', 

the frictional force and the component of the weight of the object are acting on the object in the opposite direction.  

Similarly, when species biomass changes over time in a sigmoidal trajectory through the growth process, the 

species need food support; this is equivalent to the concept of the external force in particle dynamics of the 

inclined plane. For changing the biomass in the sigmoidal trajectory, the species need sufficient food support and 

have to overcome the issue of competition. So, competition is the only negative force acting on the species against 

its natural growth process. This competition term is equivalent to the frictional force and the weight component 

of the object of the particle dynamics in an inclined plane. It needs a minimum external force to lift the object 'M' 

from the position 'O' to 'D'. If you apply less force, the 

particle will return to its original position due to its 

component. But, if you reduce the inclination anglesay, 

𝛼 (< 𝜃), the same force can lift the object to a position𝐷1, 

below the point'D' (see the figure 3). This phenomenon is 

pretty similar to the species growth process. For a species, 

we generally have a reasonable size at maturity, which is 

favorable for its successful reproduction. The 

species need a favorable amount of food 

concentration to achieve this size. Below this 

food concentration, the species maturity size is 

reduced, which is not in favor of its reproductive 

process. This stage is comparable with the 

phenomenon when the object 'M' has reached 

the point '𝐷1' instead of the 'D' due to the reduced 

external force. If you increase the food 

concentration, the size at maturity does not 

change substantially. This is also similar if you 

increase the external force instead of the 

minimum force required to lift the object in the 

inclined plane. The object will reach the same 

point, 'D', but the passage time is reduced.  

In classical mechanics, if you increase the 

amount of the external force on the object 'M', the inclination angle also increases. Then, the object will reach a 

new point, 'D2', located above the point 'D' (see the figure 1). Compared with the species growth process, as we 

already know, every species has a limit in reaching its maximum size at maturity. Hence, reaching the species 
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maturity size will no longer be affected despite providing more and more food concentration beyond the most 

favorable, responsible for attaining the maximum size at maturity. Additionally, this also happens due to 

variations in the species metabolic activities and behavioral discrepancies among different individuals of the same 

species. In another way, variations in metabolic activities depend upon the differences in the food concentration, 

which directly impacts the species growth. The system with low food concentration and a fixed number of 

predators faces more intra-specific competition than the system with more food concentration and the same 

number of predators. These different levels of intra-specific competitors trigger differences in the species 

metabolic activities under different food concentrations. However, in the case of the particle dynamics, as there 

are no issues of the interference of several biological factors like intra-specific completion, variations in metabolic 

activities, and the limit in achieving the maximum size at maturity of the predator species, etc., the object in an 

inclined plane can reach at the point 'D2', when the provided external force is more than the previous one. 
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How Many Colours Do We Need? A Survey of Four 
Colour Theorem and Its Generalizations 

Arghya Sinha 
 

 
1 Introduction 

When we colour the countries on a world map, we usually want to use different 

colours for adjacent countries to distinguish the measily. For example, India and Nepal should have different 

colours on the map. The Four Colour Problem asks how many colours are enough to colour any map in this 

way. It turns out that the answer is four and this is known as the Four Colour Theorem. In this article, we 

will explore this fascinating result, its mathematical foundations, and some extensions and generalizations 

to other types of maps and surfaces. 

 

2 Four Colour Problem 

2.1 Statement 

Before going into the statement of four colour problem, we go through some essential preliminary 

definitions to state the problem. 

Let S be a Surface and 𝐴𝑖  , 𝑖 ∈ Λ (index set) be open, connected subsets of S such that 

•     For any   𝑖, 𝑗 (  𝑖, 𝑗 ∈ Λ), Ai ∩ 𝐴𝑗 = 𝜙

• For all  i ∈ Λ boundary of 𝐴𝑖   is a simple closed curve. 

Definition:1(Country). For each i ∈Λ,  Ai   is called a Country of S. 

Definition:2(Adjacent Country). We call two countries adjacent if they share a common boundary segment. 

Definition:3(Map). For any 𝑖 ∈ Γ ⊂ Λ , Γ⬚
Ai  is called a map of S. 

 

InFigure1, A, B, C, D, E, and Fare all countries in the plane. A is an adjacent country to B, C, and D. F is 

adjacent to E. Note that F and B are not adjacent countries as they do not share a boundary segment. We 

can consider the union of A, B, C, D, E, and F as a map in the plane. Now, we are ready to state the Four 

Colour Problem. The statement is as follows. 

The countries of any given map of a sphere can be coloured using only four 

colours in such a way that no two adjacent countries are coloured with the 

same colour. 

 

Remark. The first attempt stop rove this conjecture we remade by P. G. 

Taitin1879 and A. B. Kempe, an English barrister, in 1880. However, their 

proof were flawed, as P. J. Heawood, an English mathematician, 

demonstrated in1890 by finding a gapin Kempe’sargument. The conjecture 

eremainedun- 
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Proven until 1997 when Roberts on, Sanders, Seymour, and Thomas published a proof that relied on 

extensive computer calculations. A more elegant proof was given by Georges Gonthier [1] in 2005, using 

general-purpose theorem-proving software. 

Now, we will look into a simpler approach to this problem using Graph Theory. Figure1: Simple 𝑟 statement 

of Four Colour Problem 

By using Graph Theory, we can see this problem in a new way, which will eventually help us to solve a 

more generalized version of the problem called Map Colour Theorem. Before that, we need to recall the 

definition of the planner graph. 

 

Definition 4 (Planer Graph). A planer graph is a graph that can be drawn on a plane in such a way that its 

edges only intersect at the vertices. 

 

Figure 2: Example of a Planer Graph Figure3: Map corresponding to a Planer Graph 

 

Now, we can visualize any map as an un-directed graph such that for each country, a unique vertex of the 

graph lies on the country. This graph is a Planer Graph. 

Conversely any planer graph can be visualized as a map similarly. 

So, a map always exists corresponding to a given planer graph, and the correspondence is not one-to-one 

but onto. We say A planer graph is n-colourable if all the corresponding maps the planer graph can be 

coloured with 𝑛 colours in such a way that no two adjacent countries have the same colour. In Figure 3, we 

have drawn the maps we get corresponding to the planer graph of the example of Figure 2. Also, we coloured 

the map using four colours. 

Thus, we can state the four colour problem as Any Planer Graph is four-colourable. 

Now, we try to generalize the concepts of the four colour problem (Which is true for maps on Sphere) to 

other surfaces. 

 
3 Map Colour Theorem 

3.1 Chromatic Number 

A surface is a two-dimensional object that can be embedded in a three-dimensional space. Some examples 

of surfaces are spheres, tori, and cylinders. A surface is closed if it has no boundary and is compact, meaning 

of interregional of space can contain it. One way to construct closed surfaces is by attaching handles to a 

sphere. A handle is a tube-like shape connecting two sphere points. A genus-n surface is a closed surface 

with n handles attached. The genus of a surface is a measure of its complexity or number of holes. A sphere 

has no handles or holes, so it is a genus-0 surface. A torus has one handle and hole, making it agenus-1 

surface. We can denote a genus-n surface by 𝐴𝑛 , where n is a non-negative integer. 

 

Theorem1 (Classification Theorem for Orientable Surfaces). Any closed orientable surface is homeomorphic 

to Sn   for some non-negative integer n. 

 

Definition:5 (Chromatic Number). A chromatic number of a surface S is the number n such that any 

map on S can be coloured with n number of colours, but there exists a map M on S such that 𝑛1 colours 

cannot colour M. The Chromatic Number of a surface S is denoted by χ(S) 
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The Four Colour Problem precisely states that The Chromatic Number of the Sphere is four, i.e. χ(S0) =4. 

 

3.2 Map Colour Theorem 

Since from Classification Theorem we know that any closed orientable surface is homeomorphic to some 

genus-p surface, It is sufficient to look into Sp, p ∈Z+only. 
 
 
 

3.3 Similar Statement for Non-Orientable Surfaces 

We take a rectangle of the form illustrated in Figure 4. Draw ar-

rows similarly and mark 1,2,3,...,q,q,q1,...,1.Nowattach1with 1, 2 

with 2, ...q with q in such a way that after attaching, the arrow shave  

the same direction. 

This way, we will obtain a surface called  

Mobius Strip of order q 

And denote it by Mq. 

In the figure above, we would obtain M3, and clearly, the 
Mobius Stripwe are familiar with is M1. 

We can calculate the Chromatic Number of Mq using the 

follow-ing formula proved by G.Ringel [3]in1954. 

 

𝜒(𝑀) =  7 + √1 + 24 𝑝, 𝑓𝑜𝑟 𝑞 = 2       (3) 

    χ(M2) = 6                  (4) 

 

 

 

Figure4: Mobius Strip of Order 3 
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4.   Conclusion 

he Four Colour Problem is a classic example of how a seemingly simple question can lead to profound 

discoveries in mathematics. In this article, we have explored some of the history, methods, and 

extensions of this problem. To understand the proofs of theorems mentioned in the article, one needs 

to understand the topological properties of surfaces and graphs. An interesting concept in this regard 

is embedding a graph on a surface where the graphs can be seen as a one-dimensional skeleton of a 

surface. These results demonstrate the richness and diversity of the mathematical field that studies the 

interactions of shapes, spaces, and colours. We hope this article has sparked the reader’s interest and 

curiosity in this fascinating research domain. 
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BEAUTIES OF ARITHMETIC PROGRESSION TOPOLOGY ON 𝑍 
~Dipanjana Maity        

 

1. Introduction  
    Topology is a structure of a set, which is invariant under continuous deformation that can be 

restored. This deformations are Homeomorphisms and Homotopies. On a same set, we can define 

various topologies such that the properties and behaviors of the topological spaces are fully 

different. Here we will study  a very interesting topology on the set of integers 𝑍, which is 

constructed by taking all Arithmetic Progressions. We will observe that how we can prove the 

results of this Arithmetic Progression Topological Space by using the concepts of Cosets in Group 

Theory. 

     Topology and Number Theory are two different branches of Mathematics. But is there any 

relation between them? We know that, in 300 BC, ancient Greek mathematician Euclid proved the 

Fundamental statement in Number Theory, which tells us that there are infinitely many primes in 

𝑁.   Can we prove the infinitude of primes in 𝑁, by using Topology? Surprisingly, the answer is 

yes. In my short write up, I will try to explain this topological proof of Infinitude of Primes in  𝑁. 

 

2. Preliminaries  
      Before moving on to the main part, let’s remind some basic topological concepts.  

● Topological Space :  Let 𝛸 be a non empty set. A topology 𝜏 on 𝛸 is a family of subsets of 𝛸 

such                        that (a) 𝜏 contains 𝛸 and 𝜙, 

                (b) 𝜏 is closed under arbitrary union and finite intersection. 

        Elements of 𝜏 are called open sets. Compliment of a open set is called closed set. 

● Basis:  Let 𝛸 be a non empty set. A basis for a topology on 𝛸 is a family 𝐵 of subsets of 𝛸 such 

that 

(a) For each element x ∈ X, there is an element B ∈ 𝐵 such that x ∈ B. 

(b) If x ∈ 𝛣1 ∩ 𝛣2 for some 𝛣1, 𝛣2 ∈ 𝐵, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝛣3 ∈

𝐵 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                         𝛣3 ∈ 𝛣1 ∩ 𝛣2. 

              By taking arbitrary union of elements of a basis, we get the open sets i.e. elements of the 

topology. 

● Hausdorffness : A topological space (X, 𝜏) is called Hausdorff or 𝑇2, if any two distinct 

points of X can be seperated by disjoint open sets of (X, 𝜏), 𝑖. 𝑒., there is two disjoint open 

sets in (X, 𝜏),  containing these two points respectively. 

● Regularity: A topological space (X, 𝜏) is called Regular, if a closed set and an arbitrary point, 

not in the set, can be separated by disjoint open sets of (X, 𝜏). 

● Normality: A topological space (X, 𝜏) is called Normal, if any two disjoint closed sets can be 

separated by disjoint open sets of (X, 𝜏). 

● Second countability:  (X, 𝜏) is called Second countable, if it has countable basis. 

● Metrizability: (X, 𝜏) is called Metrizable, if we find a metric d on X such that open balls of 

(X,d) are basic open sets of (X, 𝜏) and vice versa. 

● Connectedness: (X, 𝜏) is called Disconnected, if it has a non empty, proper clopen set. 

Otherwise, (X, 𝜏) is called Connected. (X, 𝜏) is Totally disconnected, if singletons are only 

connected sets. 

● Compactness: (X, 𝜏) is called Compact, if every basic open cover of  (X, 𝜏) has a finite 

subcover. 
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3. Arithmetic Progression Topology 

     Let us discuss about the the Arithmetic Progression Topology - 

⮚ Furstenberg’s Topology on 𝑍 : 
   In 1955,Harry Furstenberg introduced the Arithmetic Progression Topology on the set of all 

integers 𝑍 , taking all possible Arithmetic Progressions on 𝑍  as basis.  

o Basis:- Let 𝐵 = {𝐴𝑚,𝑛 : 𝑚 ≠ 0, 𝑚, 𝑛 ∈  𝑍} , where 𝐴𝑚,𝑛 = {𝑚𝑘 + 𝑛 ∶  𝑘 ∈  𝑍}. 

Then 𝐵 is a collection of subsets of 𝑍.  

Now, observe that, the set 𝐴𝑚,𝑛 = {𝑚𝑘 + 𝑛: 𝑘 ∈  𝑍} = 𝑚𝑍 + 𝑛 

Then 𝐵 = {𝑚𝑍 + 𝑛: 𝑚 ≠ 0, 𝑚, 𝑛 ∈ 𝑍},  

i.e., 𝐵 is nothing but the collection of Cosets of all normal subgroups 𝑛𝑍 of 𝑍 . 

Let’s try to prove that 𝐵 is a basis for some topology on 𝑍. 

Firstly, 𝐴1,0 = 𝑍 ∈ 𝐵. 

Secondly, let 𝑥 ∈ 𝐴𝑚1,𝑛1
∩ 𝐴𝑚2,𝑛2

. 

We claim that, 𝐴𝑚1,𝑥  ⊆ 𝐴𝑚1,𝑛1
 . In fact, 𝑚1𝑘1 + 𝑥 = 𝑚1(𝑘1 + 𝑘2) + 𝑛1 ∈ 𝐴𝑚1,𝑛1

,for any 

integer 𝑘1 and for some integer 𝑘2. 

So, our claim is true.  Similarly, 𝐴𝑚2,𝑥  ⊆ 𝐴𝑚2,𝑛2
. 

Now, 𝑚 = 𝑙𝑐𝑚{𝑚1, 𝑚2}. Then, we claim that, 𝐴𝑚,𝑥 ⊆ 𝐴𝑚1,𝑥 ∩ 𝐴𝑚2,𝑥. 

In fact, 𝑚𝑘 + 𝑥 = 𝑝1𝑚1𝑘 + 𝑥 = 𝑝2𝑚2𝑘 + 𝑥 ∈ 𝐴𝑚1,𝑥 ∩ 𝐴𝑚2,𝑥 , for any 𝑘 ∈ 𝑍 and for some 

𝑝1, 𝑝2 ∈ 𝑍 . so, our claim is verified. Hence, 𝑥 ∈ 𝐴𝑚,𝑥 ⊆ 𝐴𝑚1,𝑥 ∩ 𝐴𝑚2,𝑥 ⊆ 𝐴𝑚1,𝑛1
∩ 𝐴𝑚2,𝑛2

. 

So, 𝐵 is a basis for some topology on 𝑍. Now, taking all possible arbitrary union of 𝐴𝑚,𝑛 (𝑚 ≠

0), 

we get the open sets of a topology 𝜏𝐹 on 𝑍 ,namely, Furstenberg’s Topology on 𝑍. 

 

o Basic open sets are closed:- A very interesting point is that, every basic open set 𝐴𝑚,𝑛  is 

closed here.  

Let 𝐴𝑚,𝑛 =  𝑚𝑍 + 𝑛 be an arbitrary basic open set. 

Then, 𝑛 ≡ 𝑟(𝑚𝑜𝑑 𝑚) for some 𝑟 ∈ {0,1,2, . . . , 𝑚 − 1}. 

Then by using concepts of Coset, it can be says that, 𝐴𝑚,𝑛 =  𝑚𝑍 + 𝑛 =  𝑚𝑍 + 𝑟 = 𝐴𝑚,𝑟 . 

Again, since 𝑚𝑍 + 𝑟 is nothing but a coset of 𝑚𝑍,  

                  ∪𝑖=0
𝑚−1 (𝑚𝑍 + 𝑖)  =  𝑍 ⇒ 𝑚𝑍 + 𝑟 = 𝑍\(∪𝑖=0,𝑖≠𝑟

𝑚−1 (𝑚𝑍 + 𝑖) ). 

So, 𝐴𝑚,𝑛 = 𝑚𝑍 + 𝑟  being compliment of a open set is closed. 

For example, 3𝑍 ∪ (3𝑍 + 1) ∪ (3𝑍 + 2) = 𝑍 , so, 3𝑍, 3𝑍 + 1,3𝑍 + 2 are both open and 

closed. 

From the picture given below, the concept will be easy to visualize: 
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o  (𝑍, Ʈ𝐹)  is Hausdorff:- The Furstenberg Topological space is Hausdorff of 𝑇2. 

Let 𝑛1 ≠ 𝑛2 be two integers.Take a integer 𝑚 > 𝑚𝑎𝑥{|𝑛1|, |𝑛2|}. 

Then 𝐴𝑚,𝑛1
= 𝑚𝑍 + 𝑛1 and  𝐴𝑚,𝑛2

= 𝑚𝑍 + 𝑛2 must be disjoint, since they are two distinct 

cosets of 𝑚𝑍. And clearly 𝑛1 ∈ 𝐴𝑚,𝑛1
and 𝑛2 ∈ 𝐴𝑚,𝑛2

. 

 

 

o (𝑍, Ʈ𝐹)𝑖𝑠 totally disconnected:- Since every basic open set is closed in (𝑍, 𝜏𝐹) , this 

topological space is disconnected. Even it can be easily proved that the Furstenberg 

Topological space is Totally Disconnected. 

Let S be a subset of 𝑍 which contains at least two distinct points 𝑛1, 𝑛2.  

Take a integer 𝑚 > 𝑚𝑎𝑥{|𝑛1|, |𝑛2|}. Then ∪𝑖=0
𝑚−1 (𝑚𝑍 + 𝑖)  =  𝑍 and |𝑛1|, |𝑛2| ∈

{0,1, . . . , 𝑚 − 1}. 

So, 𝑆 = ((𝑚𝑍 + |𝑛1|) ∩ 𝑆) ∪ ([𝑍\(𝑚𝑍 + |𝑛1|)] ∩ 𝑆) is a disconnection of S. 

 

 

o (𝑍, Ʈ𝐹) is Metrizable:- Being countable basis, (𝑍, 𝜏𝐹) is second countable. We already saw 

that (𝑍, 𝜏𝐹) is Hausdorff.  

Again, let x ∈ 𝑍 such that 𝑥 ∉ 𝐸, where E is a closed set in (𝑍, 𝜏𝐹). Then, 𝑍\𝐸 ia a open 

set containing x. So, there exists a basic open set 𝐴𝑚,𝑛  (containing x ), contained in 𝑍\𝐸 . 

Now, 𝐴𝑚,𝑛  𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑙𝑠𝑜. So, we get two disjoint open set 𝐴𝑚,𝑛  𝑎𝑛𝑑 𝑍\𝐴𝑚,𝑛  containing 

x and E respectively. Hence (𝑍, 𝜏𝐹) is Regular. 

                             Then by Uryshon’s  metrization theorem, (𝑍, 𝜏𝐹) 𝑖𝑠 𝑀𝑒𝑡𝑟𝑖𝑧𝑎𝑏𝑙𝑒. 

 

o (𝑍, Ʈ𝐹) is non compact:-  If we consider the basic open cover {2𝑍 + 1,3𝑍, 4𝑍 + 2, 

8𝑍 + 4,16𝑍 + 8, . . . . . . . } of 𝑍, but it has no finite subcover which contains every power of 2.  

So, the space is non compact. 

 

 

 

 

4. Proof of Infinitude of Primes by using Furstenberg Topology 
     By this time, we have studied some of the behavior of Furstenberg Topological space. It is 

now time to observe the most interesting fact that, Furstenberg topological space can easily prove 

the infinitude of primes. 

❖ There are infinitely many primes in 𝑁:  

         Let 𝑃 be the set of all primes in 𝑁. Now, just notice two important facts - 

 (i) Every non empty open set of the Furstenberg topological space is infinite. 

(ii) ∪𝑝∈𝑃 𝑝𝑍 =  𝑍\{−1,1} 

Now, if possible, 𝑃 is finite set. 

since finite union of closed sets is closed , ∪𝑝∈𝑃 𝑝𝑍 is closed. That means, {-1,1} is open, 

which contradicts that every open set in (𝑍, 𝜏𝐹) is infinite.  

Hence, 𝑃 is an infinite set, i.e., there are infinitely many primes in 𝑁. 

 

5. Conclusion 
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     There are strange mystery hidden in every branch of Mathematics. Sometimes They appear in 

front of our eyes to surprised us so much. In this write up, i tried to discuss such a amazing 

collaboration of Topology with Number theory, given by Furstenberg. Two another Arithmetic 

Progression Topologies are Golomb topology and Kirch topology on 𝑁 respectively. 
The basis of Golomb Topology or relatively prime topology on 𝑁 is  

{𝑚𝑁0 + 𝑛 ∶  𝑚, 𝑛 ∈ 𝑁, 𝑔𝑐𝑑(𝑚, 𝑛) = 1},here 𝑁0 = 𝑁 ∪ {0}.The subbasis of kirch Topology or 

prime integer topology on 𝑁 is {𝑝𝑁0 + 𝑛 ∶  𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑛, 𝑛 ∈ 𝑁}. This two 

topologies also gives us so many interesting facts. For detailed discussion, one can see the 

references :  

 

1. A connected Topology for the Integers by Solomon W. Golomb 

2. A countable, connected, Locally connected Hausdorff space by A.M. Kirch 

                                                               -------------------------------------------------------------- 
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AN INTRODUCTION TO CANTOR SET  

~ Bishyay Majumdar 

INTRODUCTION 

 

The beauty of mathematics lies in its nature to surprise us i.e.; very often a phenomenon occurs in 

some area of mathematics where one would expect it least to occur. And in this process, seemingly so distinct 

two areas of mathematics get connected by some bridge. The Cantor set, named after George Cantor, is one 

of those unexpected examples that has amazed mathematicians for over a century. Let us first think about two 

questions: (a) Can we remove finitely many disjoint sub interval from an interval, say [0,1], such that we still 

be left with an uncountable set? And secondly, (b) Can we remove infinitely many disjoint sub interval from 

[0,1] to have the same result? Well, the answer to both the questions is yes. The first one is more obvious than 

the second. To answer the second one, one can take the intervals of the form 𝐼𝑛 = [
1

2𝑛
,

1

2𝑛−1
], and then take the 

set [0,1]\⋃1
∞𝐼𝑛 to get the desired result. Now, can we discard these sub-intervals in a way such that the set we 

are left with is uncountable but has zero measure? We will discuss what a measure of a set is later, but for 

now just think that a set is of measure zero implies the set is present almost nowhere. Can such a set contain 

not only infinite but uncountably many elements (i.e.; same number of elements as 𝑅)? Surprisingly, the 

answer is yes. The construction of the Cantor set provides us with the proof. Apart from set theory and Measure 

theory Cantor set also has interestingly occurred in topology and in some other areas of mathematics. In this 

write up, our main objective is to study some basic properties of the Cantor set. 

 

1. CONSTRUCTION 

 

Henry John Stephen Smith first discovered the Cantor set in 1875 and George Cantor described 

it in 1883. Let us give the mathematical construction to Cantor set as following manner: 

Let, 𝐸1 ∶= [0,
1

3
] ∪ [

2

3
, 1] (i.e.; we are removing the interval (

1

3
,

2

3
)from [0,1].) 

𝐸2: = [0,
1

32] ∪ [
2

32 ,
1

3
] ∪ [

2

3
,

7

32] ∪ [
8

32 , 1]. 

      …… 

𝐸𝑛 ∶= [0,
1

3𝑛] ∪ [
2

3𝑛 ,
1

3𝑛−1] ∪ … … ∪ [
3𝑛−1

3𝑛 , 1]. 

      …… 

Now, let, 𝐶 = ⋂𝑛=1
∞ 𝐸𝑛. Then, 𝐶 is called the Cantor 

set.  

A representation of the first four steps of the 

construction of the Cantor set is shown in the diagram:    

 

 

 

 

 

 

 

 

2. TERNARY REPRESENTATION OF REALS AND EXPRESSION OF THE ELEMENTS OF THE 

CANTOR SET IN TERNARY FORM 

  

 We, in general, are accustomed to decimal representation of real numbers. If 𝑥 ∈ 𝑅, we have 

the decimal representation of 𝑥, given by,  
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𝑥 = ⋯ 𝑏3𝑏2𝑏1. 𝑎1𝑎2𝑎3 … = ⋯ + 102𝑏3 + 10𝑏2 + 𝑏1 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑛

10𝑛
+ ⋯ (𝑤ℎ𝑒𝑟𝑒,

𝑎𝑖 , 𝑏𝑖 ∈ {0,1,2, … ,9}, ∀ 𝑖) 
In the case of the computer language, we are accustomed with binary representation of real numbers, 

i.e.; we use the base 2 instead of 10. Thus, we get the expression for 𝑥 ∈ [0,1] as, 𝑥 =
𝑎1

2
+

𝑎2

22 +
𝑎3

23 +

⋯ (𝑤ℎ𝑒𝑟𝑒, 𝑎𝑖 ∈ {0,1}, ∀ 𝑖).  
In each of the above two cases we basically divided each interval [0, 1] into 10 and 2 equal sub intervals 

respectively and denote them by 0,1,2, …, 9 in case of decimal and 0,1 in case of binary representation. 

Then for a number in the interval, we assigned 𝑎1 as the interval number in which the number is 

located. Then we again divide this interval by 10 and 2 equal sub intervals respectively and assign 𝑎2 

as the interval number in which the number is located. Continuing this process we get the said 

expressions and the expression becomes unique for each number. 

Now, what if we had divided the interval into 3 equal parts? Then we get the ternary representation of 

a number. 

So, instead of taking 10 or 2 as base, if we take 3, then for 𝑥 ∈ [0,1], we get, 𝑥 = ∑
𝑎𝑖

3𝑖
∞
𝑖=1 , where, 𝑎𝑖 ∈

{0,1,2}, ∀ 𝑖. In fact, not only for elements in [0,1], but we can derive ternary representation for any real 

numbers and for two distinct real numbers the representations are also distinct (similar as decimal or 

binary representation). 

Thus, we have the theorem: Every real number has a unique ternary representation. 

Now, using this theory and by the construction of the Cantor set 𝐶 as described earlier, we have the 

following obvious result: 

Theorem: 𝑥 ∈ 𝐶,  if and only if, the ternary representation of 𝑥 is given by, 𝑥 = ∑
𝑎𝑖

3𝑖
∞
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 ∈

{0,2}. 
 

 

 

3. CARDINALITY OF CANTOR SET 

 

 The Cantor set, although is obtained from [0, 1] by discarding uncountably many points, is still 

uncountable. 

To prove this, let us assume that 𝐶 is countable. Then, 𝐶 = {𝑎𝑛: 𝑛 ∈ 𝑁}. 

Then, 𝑎𝑛 = ∑
𝑥𝑛𝑖

3𝑖
∞
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒, 𝑥𝑛𝑖

∈ {0,2}, ∀ 𝑛, ∀ 𝑖. [Using the ternary representation]. 

Now, construct,  ∶= ∑
𝑦𝑖

3𝑖
∞
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒, 𝑦

𝑛
= 2, 𝑖𝑓 𝑥𝑛𝑛 = 0 𝑎𝑛𝑑 𝑦

𝑛
= 0, 𝑖𝑓 𝑥𝑛𝑛 = 2 . 

Then, 𝑦 ∈ 𝐶, but 𝑦 ≠ 𝑎𝑛, ∀ 𝑛, which contradicts that 𝐶 is countable. Thus, 𝐶 is uncountable (Proved). 

 

 

 

 

 

 

 

 

4. AN UNCOUNTABLE SET WITH MEASURE ZERO 

 

 Measure is basically a generalization of geometrical measures (e.g.; length, area, volume etc.). 

We define outer measure of a set 𝐸 ⊂ 𝑅 by, 𝑚∗(𝐸) = 𝑖𝑛𝑓 {𝑙(𝛤): 𝛤 ∈ 𝐶(𝐸)}, where, 𝐶(𝐸) is the set of 

all open covers of 𝐸, 𝑙(𝛤) = ∑ ⬚𝐼𝑛∈ ∑ 𝑙(𝐼𝑛)⬚
𝐼𝑛∈𝛤 and 𝑙(𝐼𝑛) is the length of the interval 𝐼𝑛(Note that, 

𝑙(𝐼) = 𝑏 − 𝑎, for any open or closed or half open half closed interval with boundary points 𝑎 and 𝑏 

with 𝑎 < 𝑏). Now, we say that 𝐸 is measurable if 𝑚∗(𝑋) = 𝑚∗(𝑋 ∪ 𝐸) + 𝑚∗(𝑋\𝐸), ∀ 𝐸 ⊂ 𝑅, and 

then we denote the measure of 𝐸 by 𝑚(𝐸) and then 𝑚(𝐸) = 𝑚∗(𝐸).Now, we state the following 

results: 

(i) 𝑚∗(𝐸) = 0 ⇒  𝐸 is measurable and 𝑚(𝐸) = 0. 
(ii) 𝑚(𝐼) = 𝑙(𝐼), for any interval 𝐼. Page 29 of 33 



(iii) For, a sequence of sets with 𝐴1 ⊃ 𝐴2 ⊃ 𝐴3 ⊃ ⋯, 𝑚∗(⋂⬚
⬚𝐴𝑛) = 𝐴𝑛, where, 𝑚∗(𝐴1) < ∞. 

(iv) For a disjoint collection of measurable sets, 𝑚(⋃⬚
⬚𝐵𝑛) = ∑ ⬚⬚

𝑛 𝐵𝑛. 

Now, we have Cantor set, 𝐶 = ⋂𝑛=1
∞ 𝐸𝑛. Also, clearly by construction of 𝐸𝑛′𝑠, using (ii), and (iv) 

𝑚∗(𝐸𝑛) = (
2

3
)

𝑛

. 

So, by (iii), 𝑚∗(𝐶) = 𝐸𝑛 

   = 𝑙𝑖𝑚
𝑛→∞

(
2

3
)

𝑛

= 0. 

Hence, by (i), Cantor set is measurable and 𝑚(𝐶) = 0 (Proved). 

 

 

 

5. SOME OF THE TOPOLOGICAL PROPERTIES OF CANTOR SET 

 

 Here we discuss some topological property of the Cantor set, where the topology is the 

subspace topology on 𝐶 ⊂ 𝑅, induced from usual topology on 𝑅. 
 

● Cantor Set is Compact and 𝑇2: Since, each 𝐸𝑛 is finite union of closed intervals, so each 𝐸𝑛is 

closed, and hence, 𝐶 being arbitrary intersection of closed set is closed. Moreover, 𝐶 ⊂ [0,1], and 

so bounded. Thus Cantor set is compact in real line (By, Heine-Borel theorem). 

 Also, Cantor Set with usual topology is Hausdorff (𝑇2), being subspace of the 𝑇2 space 𝑅. To 

prove this independently, directly from construction of the Cantor set, we have, for any two distinct 

points 𝑥 𝑎𝑛𝑑 𝑦 in 𝐶, there is 𝑛 ∈ 𝑁 such that |𝑥 − 𝑦| >
1

3𝑛. Then, 𝑥 𝑎𝑛𝑑 𝑦 are clearly in two 

different component of 𝐸𝑛, and thus can be separated by two disjoint open sets 𝑖𝑛 𝑅, 𝑠𝑎𝑦, 𝑈 𝑎𝑛𝑑 𝑉 . 

Now, 𝑥 ∈ 𝑈⋂⬚
⬚𝐶 𝑎𝑛𝑑 𝑦 ∈ 𝑉⋂⬚

⬚𝐶, where 𝑈⋂⬚
⬚𝐶, 𝑉⋂⬚

⬚𝐶 are disjoint open sets in 𝐶, and thus 𝐶 is 

𝑇2. 
 

● 𝑖𝑛𝑡(𝐶) = 𝜙:Since, 𝑖𝑛𝑡(𝐶) ≠ 𝜙 means there is an open interval 𝐼 ⊂ 𝐶. But, 𝑚(𝐶) = 0 ⇒ 𝑚(𝐼) =
𝑙(𝐼) = 0, which is not possible. 

 

● Cantor Set is Perfect:We can prove that Cantor set is perfect set, i.e.; 𝐶 = 𝐶𝑑, where 𝐶𝑑 is the set 

containing all limits point of 𝐶. 𝐶  being closed, 𝐶𝑑 ⊂ 𝐶 is obvious. Conversely, for any 𝑥 =

∑ ⬚∞
𝑖=1

𝑥𝑖

3𝑖, with 𝑥𝑖 = 0,2, if we construct a sequence {𝑦𝑛}𝑛 by 𝑦𝑛 = ∑ ⬚∞
𝑖=1

𝑦𝑛𝑖

3𝑖 , with 𝑦𝑛𝑖 = 𝑥𝑖 ,

𝑓𝑜𝑟 𝑖 ≠ 𝑛 𝑎𝑛𝑑 𝑦𝑛𝑖 = 2 − 𝑥𝑖, 𝑓𝑜𝑟 𝑖 = 𝑛,then one can easily check that this sequence converges 

to 𝑥, as  𝑛 → ∞. 
 

● Any Compact Metric Space is Continuous image of Cantor Set: That is, for any compact metric 

space (𝑋, 𝑑), there is a continuous surjection from 𝐶 𝑡𝑜 𝑋, where 𝐶 is endowed with the usual 

Euclidean metric. A detailed proof of this is beyond the scope of this article, to study the detailed 

proof one can see Reference 1. 

 

There are also so many properties of Cantor Set, and each of them is more interesting than the other 

in some perspective. But, we shall end our discussion here by stating a Geometrical property of 

Cantor Set. 

 

6. FRACTAL/SELF SIMILAR NATURE 

  

A set is self similar if it has the property that at any magnification there are pieces of the sets that have 

the same shape as the whole set. From the figure drawn in page-1, and the construction of the Cantor 

set, it can be said intuitively that, Cantor set is indeed a fractal or self similar set. For a detailed 

analytical proof one can see Reference 1. 

 

7. CONCLUSION 
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Due to its mysterious behavior in so many perspectives, Cantor set has always been a topic of great 

interest among mathematicians. The concept of the Cantor Set has also extended to the 𝛼-Cantor set, 

Cantor-like set etc. The Cantor set, when extended to a two dimensional fractal figure using a square, 

instead of a line, is called Cantor dust. All of these sets also have their applications in many branches 

of Mathematics and they act as some rare counter examples also in many areas and one can expect that 

they will continue to amaze mathematicians in the future too by virtue of their properties. 
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